Why a SDDP framework is a big deal?

Alternatives

e FAST (Finally An SDDP Toolbox)
e StochDynamicProgramming.jl
e StructDualDynProg.jl

Why SDDPjl (Oscar Dowson)

e Easy to use
e Easy to extend
e Many features

The original Oscar Downson's presentation (https:/github.com/odow/talks
/blob/master/sddp jl.ipynb




SDDP,l - A Flexible SDDP Library

What we can do with it:

Multistage stochastic linear program in discrete time
RHS uncertainty (scenarios)

Markov uncertainty

Risk neutral or risk averse



What are we talking about

A stage has six things

=0 =

Ce(Xe—1, Xy Ug)

1. An incoming state x;_;

2. An outgoing state x;

3. Uncertainty that is realised at the beginning of the state w;
4. An action that is taken u;

5. Some dynamics x; = f;(x;—1, Uy, @;)

6. A reward that is earned ¢;(x;—1, X;, U;)



SP;(X—1, wy) : min ¢, (X—1, X, Us) + Or4q

S.t. Xr—1 = xt_l [ﬂl‘(a)l‘>]
Xe = fi(e—1, ur)

u, € Ui(x—1, wy)

SP; is a user defined JUMP model.



Where this might differ

e If | record 6 different states (initial, + five more), there are five stages, not six;

e Wait-and-See in a stage. You take an action today after realising the
uncertainty(hazard-decision);

e Each stage is set-up as a linear programme.

We call the linear programme that defines a stage a subproblem.



In [1]:  # To get started we need to clone SDDP.jl
Pkg.clone("https://github.com/odow/SDDP.jl")

# load some packages
using SDDP, JuMP, Clp



The stock example

Links to StochDynamicPrograming.jl (https:/github.com/JuliaOpt

[StochDynamicProgramming.il/blob/master/examples/stock-example.jl) and SDDP.|l
(https:/github.com/odow/SDDP.jl/blob/master/examples

/StochDynamicProgramming.jl/stock-example.jl) versions.

. Sense: Minimising
Stages: 5 stages (r = 1,2, 3,4, 5)
. States: 1 State x; € [0, 1] (initial state xg = 0.5)
. Controls: 1 control u; € [0, 0.5]
. Noises: 10 stagewise independent noises:
w; € [0,0.0333...,0.0666...,...,0.3]
. Dynamics: linear dynamics x; == x;_1 + u; — w;
. Stage Objective: linear objective (sin(37) — 1) - u,

uphwWwN PR

N O



min  (sin(31) — Du; + 0,41

S. . Xy = X1 + Uy — wy
x; € [0, 1]
u;, € [0,0.5]
xo = 0.5



Syntax for creating a new SDDPModel

We define 1. and 2. in the constructor using keyword arguments.

m = SDDPModel (
sense = :Min, # :Max or :Min?
stages = 5, # Number of stages

solver = ClpSolver(),
objective bound = -2# Valid lower bound

) do sp, t
# ) do subproblem jump model, stage index
# the first is a new JuMP Model for the subproblem, the second is an index from

1,2,...,5

# ... subproblem definition goes here ...

end



Defining the subproblem

We still need to define the last five things:

States

. Controls
. Noises

. Dynamics
. Objective

~ O Ul > W

We're going to use both sp and t from above.



3. Defining a state

A stage has an incoming, and an outgoing state variable. Behind the scenes we'll take
care of matching them up between stages.

To define a new state variable use the @state macro.
@state(sp, lb <= outgoing <= ub, incoming == initial value)

First argument is the subproblem variable from the constructor, second argument is
the outgoing variable (any feasible JUMP variable definition), third argument is the
incoming variable (symbol == initial value).



From above, we have one state x; € [0, 1], xp = 0.5

@state(sp, 0 <= x <= 1, x0 == 0.5)

The x0 is the incoming variable in each stage. It will only be forced to 0.5 in the first
stage. The syntax is just for convinence.



We could also create three state variables
x; € [0, 00), x(’) =i 1=1{1,2,3}

@state(sp, x[i=1:3] >= 0, x0==1)

t=1{1,2,...

, T}



4. Defining a control

Controls are just JuMP variables. Nothing special.

From above u; € [0, 0.5]

@variable(sp, 0 <= control <= 0.5)



9. Defining a Noise

A noise has three things:

1. A constraint
2. A set of RHS values
3. A probability distribution

Julia code is

@noise(sp, name = RHS Values, constraint)

setnoiseprobability! (sp, probability distribution)



From above we have

5 - Noises

e 10 stagewise independent noises: @; € [0, 0.0333..., 0.0666..., ..., 0.3]

6 - Dynamics

e linear dynamics x; == x;_1 + U; — w;
@noise(sp, omega = linspace(0, 0.3, 10), X == x0 + u - omega)

# set uniform probability (but its the default so you don't have to
setnoiseprobability! (sp, fill(0.1, 10))



6. Defining dynamics

These can just be any JuMP constraints

@constraint(sp, x + u <= 1.5)



/. Defining the Stage Objective

We only care about defining the stage objective. The future costs get handled
automatically.

stageobjective! (sp, AffExpr of Objective)

We can use the index t to change coefficients between subproblems so our objective
is

stageobjective! (sp, (sin(3 * t) - 1) * u)



In [ ]: wusing SDDP, JuMP, Clp

m = SDDPModel (

sense = :Min,

stages = 5,

solver = ClpSolver(),

objective bound = -2
) do sp, t

# the state
@state(sp, 0 <= x <= 1, x0 == 0.5)
# the control
@variable(sp, 0 <= u <= 0.5)
# the noise (and dynamics)
@noise(sp, w = linspace(0, 0.3, 10), x == x0 + U - w)

# the objective
stageobjective! (sp, (sin(3 * t) - 1) * u)

end



Compare the Julia code to the mathematical subproblem

min  (sin(3t) — Du; + 0,41

S.t. Xp = Xp—1 + Uy — wy
x; € [0, 1]
u; € [0,0.5]
xo = 0.5



m = SDDPModel (

sense = :Min,
stages = 5,
solver = ClpSolver(),
objective bound = -2
) do sp, t
@state(sp, 0 <=x<=1, x0 == 0.5)

@variable(sp, 0 <= u <= 0.5)
@noise(sp, w = linspace(0, 0.3, 10),
X == X0 +u - w)
stageobjective! (sp, (sin(3t) - 1)*u )
end



Solve options

For a full list run julia>? SDDP.solve

status = solve(m,

max_iterations = 10,

time limit = 600,

simulation = MonteCarloSimulation(
frequency = 5,
min = 10,
step = 10,
max = 100,
terminate = false



In [5]: srand(1111)
status = solve(m,

max_iterations = 20,
time limit = 600,
simulation = MonteCarloSimulation(

frequency = 5, # Number of forwards to construct the stat
istical bound

min = 10, # Min number of forwards to evaluate confi
dence interval for the bound

step = 10,

max = 100,

confidence = 0.95,
termination = false

),
print level=0

)

# MonteCarloSimulation(frequency, steps, confidence, termination)
# MonteCarloSimulation(frequency,collect(min:step:max),confidence, termination)

# Check bound is correct
println("Final bound is $(SDDP.getbound(m)) (Expected -1.471).")

Final bound is -1.4710749176074298 (Expected -1.471).



SDDP Solver. © Oscar Dowson, 2017.

Solver:
Serial solver
Model:
Stages: 5
States: 1
Subproblems: 5

Value Function: Default

Objective | Cut Passes Simulations Total

Expected Bound % Gap | # Time # Time Time
-1.591 -1.471 | 1 0.0 0 0.0 0.0
-1.365 -1.471 | 2 0.0 0 0.0 0.0
-1.518 -1.471 | 3 0.0 0 0.0 0.0
-1.624 -1.471 | 4 0.0 0 0.0 0.0
-1.569 -1.479 -1.471 -6.7 | 5 0.0 20 0.0 0.1
-1.537 -1.471 | 6 0.0 20 0.0 0.1



In [ ]: simulation = simulate(m, 1000, [:x, :ul)
println("Mean of simulation objectives is $(mean(r[:objective] for r in simulation)

)")



In [ ]: @visualise(simulation, i, t, begin
simulation[i][:x][t], (title="State")
simulation[i][:u][t], (title="Control")
simulation[i][:scenario][t], (title="Scenario")
simulation[i][:stageobjective][t], (title="Objective", cumulative=true)
end)



Open Visualisation (https:/odow.github.io/talks/assets/stock-example-

visualisation.html)



Example: Simplified Hydrothermal Dispatch

e Assume two thermoelectrics plants and one hydroelectric plant with
reservoir and unit productivity coefficient.

e The first thermoelectric with cost 100 and the second with 1000 (R$/ MWHh)
and capacities equal to 50 MW each.

e The hydroelectric plant has a reservoir with a capacity equivalent to 150
MWh that starts with a power of 150 MW.

e We want to minimize the cost of generating the next 3 hours.

e Demand is constant and equal to 150 MWh in all hours.



Notation

e g;; - thermoelectric generation
u; - turbine

V; - reservoir volume

a; - affluence

s; - spillway



Subproblem
FCF(vi—1) =
min 100g;; + 1000g,

2,5,1,5>0
s.t. g+ & +u =150
Vit u+ 85 = v + a
0<v £200
0<u <150
0< g1 < 50
0< g2 < 50



In [ ]: m = SDDPModel(

sense = :Min,
stages = 3,
solver = ClpSolver(),
objective bound = 0
) do sp, t
# State
@state(sp, 0 <= v <= 200, vO == 50)

# Variables

@variable(sp, 0 <= g[1l:2] <= 100)
@variable(sp, 0 <= u <= 150)
@variable(sp, s >= 0 )

# Noise
@noise(sp, a = linspace(50, 0, 10), v + u + s == vO + a)

# Constraints
@constraint(sp, gl[l] + g[2] + u == 150)

# Objective function
stageobjective! (sp, 100*g[1l] + 1000*g[2] )
end



In [12]: srand(1111)
status = solve(m,

max_iterations = 20,

time limit = 600,

simulation = MonteCarloSimulation(
frequency = 5,
min = 10,
step = 10,
max = 100,

termination = false

),
print level=0
)

println("Final bound is $(SDDP.getbound(m)) (Expected 57470).")

Final bound is 57470.000000000015 (Expected 57470).



In [28]: # Simulation
simulation = simulate(m, 1000,[:g, :u])

println("Mean of simulation objectives is $(mean(r[:objective] for r in simulation)
)")

Mean of simulation objectives is 7480.000000000001



Average Value at Risk

risk_measure = NestedAVaR(lambda = 0.5, beta = 0.5)

A risk measure that is a convex combination of Expectation and Average Value @ Risk
(also called Conditional Value @ Risk).

lambda * E[x] + (1 - lambda) * AV@R(1l-beta) [x]

Keyword Arguments

e Lambda - Convex weight on the expectation ((1-lambda) weight is put on
the AV@R component. Inreasing values of Lambda are less risk averse (more
weight on expecattion)

e beta - The quantile at which to calculate the Average Value @ Risk.
Increasing values of beta are less risk averse. If beta=0, then the AV@R
component is the worst case risk measure.



In [13]: m_risk = SDDPModel(

sense = :Min,
stages = 5,
solver = ClpSolver(),

# risk measure = Expectation(),
risk measure = NestedAVaR(lambda=0.5, beta=0.5),
objective bound = 0

) do sp, t

# the state
@state(sp, 0 <= x <= 1, x0 == 0.5)

# the control
@variable(sp, 0 <= u <= 0.5)

# the noise (and dynamics)
@noise(sp, omega = linspace(0, 0.3, 10), X == x0 + u - omega)

# the objective
stageobjective! (sp, (sin(3 * t) - 1) * u)

end
println(typeof(m risk))

SDDP.SDDPModel{SDDP.DefaultValueFunction{SDDP.DefaultCutOracle}}



In [15]: srand(1111)
status = solve(m risk,
max_iterations = 20,

time limit = 600,

simulation = MonteCarloSimulation(
frequency = 5,
min = 10,
step = 10,
max = 100,

termination = false

)

print_ level=0

)

# Check bound is correct
println("Final bound is $(SDDP.getbound(m risk)).")

Final bound is -0.42943999597006643.



De Matos (Level One) Cut Selection

m risk = SDDPModel (

sense = :Min,
stages = 5,
solver = ClpSolver(),
risk measure = Expectation(),
objective bound = -2,

DematosCutOracle()
) do sp, t

cut oracle



Asyncronous Solver

We parallelise by farming out a new instance of the SDDPModel to all slave
processors.

Slaves perform iterations independently, and asyncronously share cuts between
themselves.

solve(m,
solve type
# or
solve type

Serial()

Asyncronous ()



Markov Uncertainty

More like a feed-forward graph with discrete stages but arbitrary number of nodes
and transitions




# Transition[last index, current index] = probability
Transition = Array{Float64, 2}

[1.0],

[0.5 0.5],

[0.25 0.75; 0.75 0.25],
[0.25 0.75; 0.75 0.25],
[0.25 0.75; 0.75 0.25]



In [17]: Transition = Array{Float64, 2}[
[1.0]",
[0.5 0.5],
[0.25 0.75; 0.75 0.25],
[0.25 0.75; 0.75 0.25],
[0.25 0.75; 0.75 0.25]
]

m _markov = SDDPModel (
sense
stages = 5,
solver = ClpSolver(),
objective bound = -10,
# A vector of transition matrices. One for each stage
markov_transition = Transition

:Min,

# markov state will go from 1, 2,
) do sp, t, markov state
@state(sp, 0 <= x <= 1, x0 == 0.5)
@variable(sp, 0 <= u <= 0.5)
@noise(sp, omega = linspace(0, 0.3, 10), x == x0 + u - omega)

# the objective
stageobjective! (sp, (sin(3 * t) - 0.75 * markov _state) * u)

end
println(typeof(m markov))

SDDP.SDDPModel{SDDP.DefaultValueFunction{SDDP.DefaultCutOracle}}



In [18]: status = solve(m markov,
max_iterations = 10,
print level=0

)

# Check bound is correct
println("Final bound is $(SDDP.getbound(m markov)).")

Final bound is -1.6348860090220279.



More information

Examples, parameters and code github.com/odow/SDDPijl
(https:/github.com/odow/SDDP,jl)

Original Oscar Dowson presentation github.com/odow/talks/blob/master
/sddp_jlipynb (https:/github.com/odow/talks/blob/master/sddp_jl.ipynb)

This talk thuener.github.io/talks/ (https:/thuener.github.io/talks/)




