Why a SDDP framework is a big deal?

Alternatives

- FAST (Finally An SDDP Toolbox)
- StochDynamicProgramming.jl
- StructDualDynProg.jl

Why SDDP.jl (Oscar Dowson)

- Easy to use
- Easy to extend
- Many features

The original Oscar Downson's presentation (https://github.com/odow/talks/blob/master/sddp_il.ipynb)

SDDP.jl - A Flexible SDDP Library

What we can do with it:

- Multistage stochastic linear program in discrete time
- RHS uncertainty (scenarios)
- Markov uncertainty
- Risk neutral or risk averse

What are we talking about

A stage has six things

- 1. An incoming state x_{t-1}
- 2. An outgoing state x_t
- 3. Uncertainty that is realised at the beginning of the state ω_t
- 4. An action that is taken u_t
- 5. Some dynamics $x_t = f_t(x_{t-1}, u_t, \omega_t)$
- 6. A reward that is earned $c_t(x_{t-1}, x_t, u_t)$

$$SP_{t}(\bar{x}_{t-1}, \omega_{t}) : \min_{u_{t}} c_{t}(x_{t-1}, x_{t}, u_{t}) + \theta_{t+1}$$
s.t. $x_{t-1} = \bar{x}_{t-1}$ $[\pi_{t}(\omega_{t})]$

$$x_{t} = f_{t}(x_{t-1}, u_{t})$$

$$u_{t} \in U_{t}(x_{t-1}, \omega_{t})$$

 SP_t is a user defined JuMP model.

Where this might differ

- If I record 6 different states (initial, + five more), there are five stages, not six;
- Wait-and-See in a stage. You take an action today after realising the uncertainty(hazard-decision);
- Each stage is set-up as a linear programme.

We call the linear programme that defines a stage a subproblem.

```
In [1]: # To get started we need to clone SDDP.jl
Pkg.clone("https://github.com/odow/SDDP.jl")

# load some packages
using SDDP, JuMP, Clp
```

The stock example

Links to <u>StochDynamicPrograming.il</u> (https://github.com/JuliaOpt /StochDynamicProgramming.il/blob/master/examples/stock-example.il) and <u>SDDP.il</u> (https://github.com/odow/SDDP.il/blob/master/examples /StochDynamicProgramming.il/stock-example.il) versions.

- 1. Sense: Minimising
- 2. Stages: 5 stages (t = 1, 2, 3, 4, 5)
- 3. States: 1 State $x_t \in [0, 1]$ (initial state $x_0 = 0.5$)
- 4. Controls: 1 control $u_t \in [0, 0.5]$
- 5. Noises: 10 stagewise independent noises: $\omega_t \in [0, 0.0333..., 0.0666..., ..., 0.3]$
- 6. Dynamics: linear dynamics $x_t == x_{t-1} + u_t \omega_t$
- 7. Stage Objective: linear objective $(\sin(3t) 1) \cdot u_t$

$$\min_{u_t} \quad (\sin(3t) - 1)u_t + \theta_{t+1}$$
s. t. $x_t = x_{t-1} + u_t - \omega_t$

$$x_t \in [0, 1]$$

$$u_t \in [0, 0.5]$$

$$x_0 = 0.5$$

Syntax for creating a new SDDPModel

We define 1. and 2. in the constructor using keyword arguments.

```
m = SDDPModel(
    sense = :Min,  # :Max or :Min?
    stages = 5,  # Number of stages
    solver = ClpSolver(),
    objective_bound = -2# Valid lower bound
) do sp, t
    # ) do subproblem_jump_model, stage_index
    # the first is a new JuMP Model for the subproblem, the second is an index from
1,2,...,5
# ... subproblem definition goes here ...
end
```

Defining the subproblem

We still need to define the last five things:

- 3. States
- 4. Controls
- 5. Noises
- 6. Dynamics
- 7. Objective

We're going to use both sp and t from above.

3. Defining a state

A stage has an incoming, and an outgoing state variable. Behind the scenes we'll take care of matching them up between stages.

To define a new state variable use the @state macro.

```
@state(sp, lb <= outgoing <= ub, incoming == initial value)</pre>
```

First argument is the subproblem variable from the constructor, second argument is the outgoing variable (any feasible JuMP variable definition), third argument is the incoming variable (symbol == initial value).

From above, we have one state $x_t \in [0, 1], x_0 = 0.5$

```
@state(sp, 0 \le x \le 1, x0 == 0.5)
```

The $x\theta$ is the incoming variable in each stage. It will only be forced to θ . 5 in the first stage. The syntax is just for convinence.

We could also create three state variables

$$x_t^i \in [0, \infty), \quad x_0^i = i, \quad i = \{1, 2, 3\} \quad t = \{1, 2, \dots, T\}$$

@state(sp, x[i=1:3] >= 0, x0==i)

4. Defining a control

Controls are just JuMP variables. Nothing special.

From above $u_t \in [0, 0.5]$

```
@variable(sp, 0 \le control \le 0.5)
```

5. Defining a Noise

A noise has three things:

- 1. A constraint
- 2. A set of RHS values
- 3. A probability distribution

Julia code is

```
@noise(sp, name = RHS Values, constraint)
setnoiseprobability!(sp, probability distribution)
```

From above we have

- 5 Noises
 - 10 stagewise independent noises: $\omega_t \in [0, 0.0333..., 0.0666..., ..., 0.3]$
- 6 Dynamics
- linear dynamics $x_t == x_{t-1} + u_t \omega_t$ @noise(sp, omega = linspace(0, 0.3, 10), x == x0 + u - omega) # set uniform probability (but its the default so you don't have to setnoiseprobability!(sp, fill(0.1, 10))

6. Defining dynamics

These can just be any JuMP constraints

```
@constraint(sp, x + u \le 1.5)
```

7. Defining the Stage Objective

We only care about defining the stage objective. The future costs get handled automatically.

```
stageobjective!(sp, AffExpr of Objective)
```

We can use the index t to change coefficients between subproblems so our objective is

```
stageobjective!(sp, (\sin(3 * t) - 1) * u)
```

```
In [ ]: | using SDDP, JuMP, Clp
         m = SDDPModel(
                            sense = :Min,
                           stages = 5,
                           solver = ClpSolver(),
                 objective bound = -2
                                                    ) do sp, t
             # the state
             Qstate(sp, 0 \le x \le 1, x0 == 0.5)
             # the control
             @variable(sp, 0 \le u \le 0.5)
             # the noise (and dynamics)
             @noise(sp, \omega = linspace(0, 0.3, 10), x == x0 + u - \omega)
             # the objective
             stageobjective!(sp, (\sin(3 * t) - 1) * u)
         end
```

Compare the Julia code to the mathematical subproblem

$$\min_{u_t} \quad (\sin(3t) - 1)u_t + \theta_{t+1}$$
s. t. $x_t = x_{t-1} + u_t - \omega_t$

$$x_t \in [0, 1]$$

$$u_t \in [0, 0.5]$$

$$x_0 = 0.5$$

Solve options

For a full list run julia>? SDDP.solve

```
In [5]:
        srand(1111)
        status = solve(m,
             max iterations = 20,
             time limit
                            = 600,
             simulation
                            = MonteCarloSimulation(
                                 frequency = 5, # Number of forwards to construct the stat
        istical bound
                                           = 10, # Min number of forwards to evaluate confi
                                 min
        dence interval for the bound
                                           = 10,
                                 step
                                           = 100.
                                 max
                                 confidence = 0.95,
                                 termination = false
              print level=0
        # MonteCarloSimulation(frequency, steps, confidence, termination)
        # MonteCarloSimulation(frequency, collect(min:step:max), confidence, termination)
        # Check bound is correct
        println("Final bound is $(SDDP.getbound(m)) (Expected -1.471).")
```

Final bound is -1.4710749176074298 (Expected -1.471).

SDDP Solver. © Oscar Dowson, 2017.

Solver:

Serial solver

Model:

Stages: 5
States: 1
Subproblems: 5

Value Function: Default

Objective Simulations Total Cut Passes Time Time Bound % Gap Time Expected -1.591 -1.471 0.0 0 0.0 0.0 2 0.0 -1.365 -1.471 0.0 0.0 -1.518 -1.471 0.0 0.0 0.0 -1.471 0.0 -1.624 0.0 0.0 -1.569 -1.479 -1.471 -6.7 0.0 20 0.0 0.1 -1.537 -1.471 0.0 0.0 0.1 20

```
In [ ]: simulation = simulate(m, 1000, [:x, :u])
    println("Mean of simulation objectives is $(mean(r[:objective] for r in simulation)
    )")
```


Example: Simplified Hydrothermal Dispatch

- Assume two thermoelectrics plants and one hydroelectric plant with reservoir and unit productivity coefficient.
- The first thermoelectric with cost 100 and the second with 1000 (R\$/ MWh) and capacities equal to 50 MW each.
- The hydroelectric plant has a reservoir with a capacity equivalent to 150 MWh that starts with a power of 150 MW.
- We want to minimize the cost of generating the next 3 hours.
- Demand is constant and equal to 150 MWh in all hours.

Notation

- $g_{i,t}$ thermoelectric generation
- u_t turbine
- v_t reservoir volume
- a_t affluence
- s_t spillway

Subproblem

$$FCF(v_{t-1}) =$$

$$\min_{g,s,u,s\geq 0} 100g_{1,t} + 1000g_{2,t}$$

$$s. t. \quad g_{1,t} + g_{2,t} + u_t = 150$$

$$v_t + u_t + s_t = v_{t-1} + a_t$$

$$0 \leq v_t \leq 200$$

$$0 \leq u_t \leq 150$$

$$0 \leq g_{1,t} \leq 50$$

$$0 \leq g_{2,t} \leq 50$$

```
In [ ]: | m = SDDPModel(
                          sense = :Min,
                         stages = 3,
                         solver = ClpSolver(),
                objective bound = 0
                                                ) do sp, t
            # State
            0 \le v \le 200, v0 = 50
            # Variables
            @variable(sp, 0 \le g[1:2] \le 100)
            @variable(sp, 0 \le u \le 150)
            @variable(sp, s >= 0)
            # Noise
            @noise(sp, a = linspace(50, 0, 10), v + u + s == v0 + a)
            # Constraints
            @constraint(sp, g[1] + g[2] + u == 150)
            # Objective function
            stageobjective!(sp, 100*g[1] + 1000*g[2])
        end
```

```
In [12]:
         srand(1111)
         status = solve(m,
             max_iterations = 20,
             time limit
                            = 600,
             simulation
                            = MonteCarloSimulation(
                                  frequency = 5,
                                  min
                                            = 10,
                                  step
                                            = 10,
                                            = 100,
                                  max
                                  termination = false
               print_level=0
         println("Final bound is $(SDDP.getbound(m)) (Expected 57470).")
```

Final bound is 57470.000000000015 (Expected 57470).

```
In [28]: # Simulation
    simulation = simulate(m, 1000,[:g, :u])
    println("Mean of simulation objectives is $(mean(r[:objective] for r in simulation)
    )")
```

Mean of simulation objectives is 7480.000000000001

Average Value at Risk

```
risk_measure = NestedAVaR(lambda = 0.5, beta = 0.5)
```

A risk measure that is a convex combination of Expectation and Average Value @ Risk (also called Conditional Value @ Risk).

```
lambda * E[x] + (1 - lambda) * AV@R(1-beta)[x]
```

Keyword Arguments

- lambda Convex weight on the expectation ((1-lambda) weight is put on the AV@R component. Inreasing values of lambda are less risk averse (more weight on expecattion)
- beta The quantile at which to calculate the Average Value @ Risk.
 Increasing values of beta are less risk averse. If beta=0, then the AV@R component is the worst case risk measure.

```
In [13]:
         m risk = SDDPModel(
                            sense = :Min,
                           stages = 5,
                           solver = ClpSolver(),
                     # risk measure = Expectation(),
                     risk measure = NestedAVaR(lambda=0.5, beta=0.5),
                  objective bound = 0
                                                   ) do sp, t
              # the state
              ostate(sp, 0 \le x \le 1, x0 == 0.5)
              # the control
              @variable(sp, 0 \le u \le 0.5)
              # the noise (and dynamics)
              @noise(sp, omega = linspace(0, 0.3, 10), x == x0 + u - omega)
              # the objective
              stageobjective!(sp, (\sin(3 * t) - 1) * u)
          end
          println(typeof(m risk))
```

SDDP.SDDPModel{SDDP.DefaultValueFunction{SDDP.DefaultCutOracle}}

```
In [15]:
         srand(1111)
          status = solve(m_risk,
              max_iterations = 20,
              time limit
                             = 600,
              simulation
                             = MonteCarloSimulation(
                                  frequency = 5,
                                  min
                                            = 10,
                                            = 10,
                                  step
                                            = 100,
                                  max
                                  termination = false
                              ),
              print_level=0
         # Check bound is correct
          println("Final bound is $(SDDP.getbound(m risk)).")
```

Final bound is -0.42943999597006643.

De Matos (Level One) Cut Selection

Asyncronous Solver

We parallelise by farming out a new instance of the SDDPModel to all slave processors.

Slaves perform iterations independently, and asyncronously share cuts between themselves.

```
solve(m,
    solve_type = Serial()
    # or
    solve_type = Asyncronous()
)
```

Markov Uncertainty

More like a feed-forward graph with discrete stages but arbitrary number of nodes and transitions


```
# Transition[last index, current_index] = probability
Transition = Array{Float64, 2}[
    [1.0],
    [0.5 0.5],
    [0.25 0.75; 0.75 0.25],
    [0.25 0.75; 0.75 0.25],
    [0.25 0.75; 0.75 0.25]
]
```

```
In [17]:
         Transition = Array{Float64, 2}[
              [1.0]',
              [0.5 \ 0.5],
              [0.25 \ 0.75; \ 0.75 \ 0.25],
              [0.25 \ 0.75; \ 0.75 \ 0.25],
              [0.25 0.75; 0.75 0.25]
          m markov = SDDPModel(
                             sense = :Min,
                            stages = 5,
                            solver = ClpSolver(),
                   objective bound = -10,
                  # A vector of transition matrices. One for each stage
                markov transition = Transition
                                                    # markov state will go from 1, 2, ..., S
                                                     ) do sp, t, markov state
              O(state(sp, 0 \le x \le 1, x0 == 0.5))
              @variable(sp, 0 \le u \le 0.5)
              gammanoise(sp, omega = linspace(0, 0.3, 10), x == x0 + u - omega)
              # the objective
              stageobjective!(sp, (sin(3 * t) - 0.75 * markov state) * u)
          end
          println(typeof(m markov))
```

SDDP.SDDPModel{SDDP.DefaultValueFunction{SDDP.DefaultCutOracle}}

Final bound is -1.6348860090220279.

More information

Examples, parameters and code github.com/odow/SDDP.jl (https://github.com/odow/SDDP.jl)

Original Oscar Dowson presentation github.com/odow/talks/blob/master/sddp_jl.ipynb (https://github.com/odow/talks/blob/master/sddp_jl.ipynb)

This talk thub.io/talks/ (https://thub.io/talks/)